History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress.
نویسندگان
چکیده
As small molecules that aid in posttranscriptional silencing, microRNA (miRNA) discovery and characterization have vastly benefited from the recent development and widespread application of next-generation sequencing (NGS) technologies. Several miRNAs were identified through sequencing of constructed small RNA libraries, whereas others were predicted by in silico methods using the recently accumulating sequence data. NGS was a major breakthrough in efforts to sequence and dissect the genomes of plants, including bread wheat and its progenitors, which have large, repetitive and complex genomes. Availability of survey sequences of wheat whole genome and its individual chromosomes enabled researchers to predict and assess wheat miRNAs both in the subgenomic and whole genome levels. Moreover, small RNA construction and sequencing-based studies identified several putative development- and stress-related wheat miRNAs, revealing their differential expression patterns in specific developmental stages and/or in response to stress conditions. With the vast amount of wheat miRNAs identified in recent years, we are approaching to an overall knowledge on the wheat miRNA repertoire. In the following years, more comprehensive research in relation to miRNA conservation or divergence across wheat and its close relatives or progenitors should be performed. Results may serve valuable in understanding both the significant roles of species-specific miRNAs and also provide us information in relation to the dynamics between miRNAs and evolution in wheat. Furthermore, putative development- or stress-related miRNAs identified should be subjected to further functional analysis, which may be valuable in efforts to develop wheat with better resistance and/or yield.
منابع مشابه
Genome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review
Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...
متن کاملDeep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton
Drought and salinity are two major environmental factors adversely affecting plant growth and productivity. However, the regulatory mechanism is unknown. In this study, the potential roles of small regulatory microRNAs (miRNAs) in cotton response to those stresses were investigated. Using next-generation deep sequencing, a total of 337 miRNAs with precursors were identified, comprising 289 know...
متن کاملUpstream Regulatory Elements, Potential Targets and Expression Patterns of Three Drought Responsive miRNAs in Two Grapevine Cultivars
MicroRNAs (miRNAs), as a group of non-coding small RNAs, play key roles in regulating the growth, development and response of plants to various stresses. In this study, the expression patterns of three drought responsive miRNAs (miR159c, miR160a,b and miR169v) were compared in both drought tolerant (Yaghuti) and drought sensitive (Bidanesefid) grapevine cultivars using qRT-PCR under drought str...
متن کاملIdentification of soybean circular RNAs in response to low nitrogen and phosphorus stress
Soybean, one of the most important sources of edible oil and protein in the world, is exposed to various environmental biotic and abiotic stresses. These stresses can negatively impact the quality and quantity of soybean production. This study aimed to identify genes that express circular RNAs in response to low phosphorus and nitrogen stresses in soybean roots. Soybean seeds were grown under d...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Briefings in functional genomics
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2015